LATIHAN SOAL PERTIDAKSAMAAN EKSPONEN
Nilai keterampilan

a. x ≥ -3/2
b. x ≥ -1
c. x ≥ 0
d. x ≥ 1/2
e. x ≥ 1
pembahasan:


2x + 2 ≥ -2x – 2
4x ≥ -4
x ≥ -1
jawaban: B
2.) Tentukan himpunan penyelesaian dari pertidaksamaan 9×-1 < 3-×+2 !
Pembahasan:
9-×+1 < 3-×+2 » (3²)×+1 < 3-×+2 » 3²×-2 < 3-×+2
Karena, a = 3 > 1, maka
2×-2 < -×+2 » 3× <4 » × < 4/3
Maka, himpunan penyelesaiannya adalah {× < 4/3}
B. -3 ≤ x ≤ 1/25
C. x ≤ 2
D. x ≥ 2
E. x ≥ -2
Pembahasan :
5-2x+2 + 74 . 5-x - 3 ≥ 0
5-2x . 52 + 74 . 5-x - 3 ≥ 0
25(5-x)2 + 74(5-x) - 3 ≥ 0
Misalkan y = 5-x, pertidaksamaan diatas menjadi
25y2 + 74y - 3 ≥ 0
Pembuat nol :
25y2 + 74y - 3 = 0
(y + 3)(25y - 1) = 0
y = -3 atau y = 1/25
Dengan uji garis bilangan diperoleh :
y ≤ -3 atau y ≥ 1/25
Karena y = 5-x, maka
5-x ≤ -3 ⟶ tidak mempunyai penyelesaian
5-x ≥ 1/25 ⇔ 5-x ≥ 5-2 ⇔ -x ≥ -2 ⇔ x ≤ 2
Jadi, penyelesaiannya adalah x ≤ 2
Jawaban : C
3.) Himpunan penyelesaian dari pertidaksamaan eksponen adalah ...
A. {x / -2 ≤ x ≤ 10/3}
B. {x / -10/3 ≤ x ≤ 2}
C. {x / x ≤ -10/3 atau x ≥ 2}
D. {x / x ≤ -2 atau x ≥ 10/3}
E. {x / -10/3 ≤ x ≤ -2}
Pembahasan :
Pembuat nol :
3x2 + 4x - 20 = 0
(3x + 10)(x - 2) = 0
x = -10/3 atau x = 2
Dengan uji garis bilangan diperoleh
x ≤ -10/3 atau x ≥ 2
A. {x / -2 ≤ x ≤ 10/3}
B. {x / -10/3 ≤ x ≤ 2}
C. {x / x ≤ -10/3 atau x ≥ 2}
D. {x / x ≤ -2 atau x ≥ 10/3}
E. {x / -10/3 ≤ x ≤ -2}
Pembahasan :
Pembuat nol :
3x2 + 4x - 20 = 0
(3x + 10)(x - 2) = 0
x = -10/3 atau x = 2
Dengan uji garis bilangan diperoleh
x ≤ -10/3 atau x ≥ 2
Jawaban : C
4.) Penyelesaian dari 5-2x+2 + 74 . 5-x - 3 ≥ 0 adalah ...
A. x ≤ -3 atau x ≥ 1/25B. -3 ≤ x ≤ 1/25
C. x ≤ 2
D. x ≥ 2
E. x ≥ -2
Pembahasan :
5-2x+2 + 74 . 5-x - 3 ≥ 0
5-2x . 52 + 74 . 5-x - 3 ≥ 0
25(5-x)2 + 74(5-x) - 3 ≥ 0
Misalkan y = 5-x, pertidaksamaan diatas menjadi
25y2 + 74y - 3 ≥ 0
Pembuat nol :
25y2 + 74y - 3 = 0
(y + 3)(25y - 1) = 0
y = -3 atau y = 1/25
Dengan uji garis bilangan diperoleh :
y ≤ -3 atau y ≥ 1/25
Karena y = 5-x, maka
5-x ≤ -3 ⟶ tidak mempunyai penyelesaian
5-x ≥ 1/25 ⇔ 5-x ≥ 5-2 ⇔ -x ≥ -2 ⇔ x ≤ 2
Jadi, penyelesaiannya adalah x ≤ 2
Jawaban : C
5.) Nilai x yang memenuhi pertidaksamaan 32x+1 + 9 − 28 ∙ 3x > 0, x ∈ R adalah ….
A. x > −1 atau x > 2
B. x < −1 atau x < 2
C. x < 1 atau x > 2
D. x < −1 atau x > 2
E. x > −1 atau x < −2
PembahasanLangkah pertama, kita pecah bilangan berpangkat 32x+1 menjadi 32x ∙ 31.
32x+1 + 9 − 28 ∙ 3x > 0
32x ∙ 31 + 9 − 28 ∙ 3x > 0
Misalkan p = 3x kemudian kita urutkan sehingga menjadi:
3p2 − 28p + 9 > 0
(3p − 1)(p − 9) > 0
Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri 1/3 atau di sebelah kanan 9.
p < 1/3 atau p > 9
3x < 3−1 atau 3x > 32
x < −1 atau x > 2
Jadi, nilai x yang memenuhi pertidaksamaan eksponen di atas adalah opsi (D).
A. x > −1 atau x > 2
B. x < −1 atau x < 2
C. x < 1 atau x > 2
D. x < −1 atau x > 2
E. x > −1 atau x < −2
PembahasanLangkah pertama, kita pecah bilangan berpangkat 32x+1 menjadi 32x ∙ 31.
32x+1 + 9 − 28 ∙ 3x > 0
32x ∙ 31 + 9 − 28 ∙ 3x > 0
Misalkan p = 3x kemudian kita urutkan sehingga menjadi:
3p2 − 28p + 9 > 0
(3p − 1)(p − 9) > 0
Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri 1/3 atau di sebelah kanan 9.
p < 1/3 atau p > 9
3x < 3−1 atau 3x > 32
x < −1 atau x > 2
Jadi, nilai x yang memenuhi pertidaksamaan eksponen di atas adalah opsi (D).
Komentar
Posting Komentar